Economy, Transport and Environment Department

Technical Guidance Note

TG13 - Street Lighting

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Amendment Description</th>
<th>Prepared By</th>
<th>Approved/owned by</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5/7/18</td>
<td>Initial Publication for Comment</td>
<td>Ian Hurford</td>
<td>Julian Higgins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paul Spence</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19/5/19</td>
<td>Links updated</td>
<td>Kathie Murray</td>
<td>Julian Higgins</td>
</tr>
<tr>
<td>2</td>
<td>07/12/20</td>
<td>General content reviewed and flow charts added</td>
<td>Amanda Reece</td>
<td>Julian Higgins</td>
</tr>
<tr>
<td>2.1</td>
<td>16/03/21</td>
<td>General content reviewed</td>
<td>Ian Hurford</td>
<td>Julian Higgins</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Julian Higgins</td>
<td></td>
</tr>
</tbody>
</table>

Amendments are indicated by a bar in the left hand margin (as this is a minor revision the changes for both Revision 2 and 2.1 are indicated)
1. Introduction ...4
2. Definitions and Abbreviations5
3. Technical Requirements – Planning & Design7
 3.1. Planning of Developments7
 3.2. Design Standards – BS 5489 & BS EN 132017
 3.3. Institution of Lighting Professionals (ILP) Guidance8
 3.4. Environmental Zones and Light Intrusion8
 3.5. Construction, Design & Management Regulations (CDM)8
 3.6. Hazard Elimination & Management List (HEML)9
 3.7. HSG47 - Avoiding Danger from Services9
 3.8. G39/1 – Electrical Safety9
 3.9. GP10 – Safety During Installation9
 3.10. Street Clutter ..9
 3.11. Column Height Constraints10
 3.12. Lighting Layout Drawing11
 3.13. Designers Narrative ...12
 3.14. Maintenance Factors (new equipment)12
 3.15. Maintenance Factors (‘legacy’ luminaires)13
 3.16. Lighting Design Calculations13
 3.17. Design dimming / Variable Light Output13
 3.18. Conflict Areas, crossings, traffic calming, cycleways13
 3.19. Apparatus Positioning & Clearances14
 3.20. Highway Trees & Lighting16
 3.21. Ecology & Lighting ...16
 3.22. Non-Standard Apparatus & Commuted Sums17
 3.23. Power Supply ...17
 3.24. Electrical Test Data ..17
 3.25. Passive Safety Risk Assessment18
 3.27. Apparatus – Lighting Columns20
 3.28. Apparatus – Illuminated Signs21
 3.29. Apparatus - Road Lighting Luminaires22
 3.30. Apparatus - Internal Wiring of Columns & Signs22
 3.31. Apparatus - Passively Safe Equipment23
 3.32. Private Cable, Ducting, Feeder Pillars24
 4.1. Existing Apparatus Within the Works – De-accrual & Suspension27
 4.2. HEA Contractors ...28
4.3. Temporary Signing ... 28
4.4. Labelling of Apparatus .. 28
4.5. Cable Schematics ... 28
4.6. Maintenance before Accrual ... 28
4.7. Pre-Accrual Inspection .. 31

5. Providing Relevant Documentation ... 35
 5.1. Energy ... 35
 5.2. Confirmation of Accrual Required Standards .. 35

6. Further Support ... 38

Appendix A – Luminaire Model Table ... 39

Table 1: Column height & luminaire tilt constraints ... 10
Table 2: Horizontal clearances .. 14
Table 3: Applicable methods for determining when a rrs is required 18
Table 4: Wind loading ... 20
Table 5: Pre-accrual inspection checklist .. 32
1. **Introduction**

1.1. Hampshire County Council’s (HCC) stock of apparatus is maintained on a PFI contract running from 2010 to 2035. The PFI’s Operating Sub-Contractor is SSE Enterprise Lighting Services (SSE).

1.2. Hampshire County Council has no discretion for relaxation of the Accrual Required Standards of the PFI Output Specification.

1.3. This Technical Guidance Note 13 summarises the Development Standard and ensures compliance with the Accrual Required Standards.

1.4. Commuted Sums will apply to any non-standard apparatus (refer to the [Commuted Sum Policy](#)). Specification details of all such apparatus are to be agreed in consultation with Hampshire County Council’s Street Lighting Section prior to installation.

1.5. For further guidance on policy & practice on street lighting in Hampshire see the [Street Lighting Maintenance Management Plan (SLMMP)](#).
Definitions and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual average daily traffic</td>
</tr>
<tr>
<td>Accrued</td>
<td>When applied to any item of Apparatus, Apparatus which has become the responsibility of the Hampshire County Council under the terms of its PFI Street Lighting Maintenance Contract.</td>
</tr>
<tr>
<td>Apparatus</td>
<td>Street lighting and off-highway lighting installations and materials which, for the avoidance of doubt and without limitations includes: lighting points, lighting columns, posts, straight posts (only to the extent used as an additional support for an illuminated traffic sign) together with their respective attachments, luminaires, lanterns, shields, control gear, control devices, switches, relays, meters, illuminated traffic signs, subway lighting, illuminated traffic bollards, Belisha beacons, variable message signs, illuminated pedestrian refuge beacons, school crossing patrol warning lights, flood lighting of monuments and buildings, surface car park lighting systems, wall mounted connection boxes, conduits, surface mounted wiring/cabling, feeder pillars, Authority owned Private Cable Networks and all associated components.</td>
</tr>
<tr>
<td>Authority Attachment(s)</td>
<td>Any Authority owned street or traffic signs or sign plate or notices or other equipment and items authorised by the Authority to be attached to Apparatus including (and in the case of illuminated items only) to other structures.</td>
</tr>
<tr>
<td>CCT</td>
<td>Correlated Colour Temperature</td>
</tr>
<tr>
<td>CDM</td>
<td>Construction, Design and Management Regulations</td>
</tr>
<tr>
<td>De-Accrued</td>
<td>When applied to any item of Apparatus, Apparatus which is no longer the responsibility of the Hampshire County Council under the terms of its PFI Street Lighting Maintenance Contract.</td>
</tr>
<tr>
<td>Developer Portal</td>
<td>Hampshire County Council’s Online portal for the submission and tracking of S278/S38 applications</td>
</tr>
<tr>
<td>DfT</td>
<td>Department for Transport</td>
</tr>
<tr>
<td>DNO</td>
<td>(a) a distribution network operator and/or (b) an independent distribution network operator within the meaning of Part 1 of the Electricity Act 1989</td>
</tr>
</tbody>
</table>
as amended by the Utilities Act 2000.

<table>
<thead>
<tr>
<th>Excusing Cause</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any event whereby equipment can be suspended from Hampshire County Council’s PFI Street Lighting Maintenance Contract.</td>
<td></td>
</tr>
<tr>
<td>HCC HDA</td>
<td>Hampshire County Council Highway Development Agreements Team</td>
</tr>
<tr>
<td>HSL</td>
<td>Hampshire County Council Street Lighting Team</td>
</tr>
<tr>
<td>HEML</td>
<td>Hazard Elimination Management List</td>
</tr>
<tr>
<td>ILP</td>
<td>Institution of Lighting Professionals</td>
</tr>
<tr>
<td>Mayflower</td>
<td>Central Management System for lighting control</td>
</tr>
<tr>
<td>MEWP</td>
<td>Mobile Elevating Work Platform</td>
</tr>
<tr>
<td>NJUG</td>
<td>National Joint Utilities Group</td>
</tr>
<tr>
<td>RRRAP</td>
<td>Road Restraints Risk Assessment Process</td>
</tr>
<tr>
<td>SLL</td>
<td>Society of Light and Lighting</td>
</tr>
<tr>
<td>TfL</td>
<td>Transport for London</td>
</tr>
<tr>
<td>UmSUG</td>
<td>Un-metered Supplies User Group</td>
</tr>
</tbody>
</table>
3. Technical Requirements – Planning & Design

3.1. Planning of Developments

3.1.1 Developers and their Consultants need to consider street lighting at the earliest opportunity and should consider:

a) **Sustainability.** Public realm lighting must minimise CO₂ emissions and future maintenance costs.

b) **Design Codes.** Development Design Codes should incorporate a site-specific lighting design brief issued by the Highway Authority.

c) **Street Layout.** If footpaths & cycle paths are routed separately from the road then they may require separate systems of lighting.

d) **Highway Trees.** Combined arboriculture and lighting advice should be obtained at an early stage from the Highway Authority before tree positions are agreed.

e) **Ecology & Lighting.** Where planning and/or environmental assessments have identified the presence of protected species, lighting (and alignment design) is to be designed to minimise its impact on wildlife including maintaining dark corridors where required.

f) **Non-standard apparatus.** Any departure from standard materials will require specific approval by the HCC’s Street Lighting Section as part of the design approval process. Non-standard apparatus will always incur commuted sum charges, and some may not be permitted within the Highway.

3.2. Design Standards – BS 5489 & BS EN 13201

3.2.1 Lighting designs should be based on the current versions of:

a) BS 5489-1 - *Code of Practice for the Design of Road Lighting (Part 1: Lighting of Roads and Public Amenity Areas)* and the associated current BS EN 13201 Standards

b) BS 7671 - Requirements for Electrical Installations. IET Wiring Regulations

c) BS EN 12899 - Fixed, Vertical Road Traffic Signs - Part 1: Fixed Signs

d) BS EN 12464 - Outdoor Lighting

e) BS EN 40-3 - Lighting Columns. Design and Verification – Verification by testing

f) PD 6547 - Guidance on the use of BS EN 40,

g) HSG 38 Lighting at Work

h) HSE GS6 Avoiding danger from overhead lines.

3.2.2 Relevant CIE, Highways England, DfT, TfL, SLL and Well Managed Highways technical guidance should be followed.
3.3. **Institution of Lighting Professionals (ILP) Guidance**

3.3.1 Designers are to take guidance from the Institution of Lighting Professionals’ (ILP) technical reports, professional lighting guides and guidance notes.

3.4. **Environmental Zones and Light Intrusion**

3.4.1 Developments should be categorized by Environmental Zones in accordance with ILP *Guidance Note for the Reduction of Obtrusive Light*.

3.4.2 Light intrusion (e.g. into windows) is to be avoided and any apparent issues are to be monitored by the Developer in accordance with ILP *Guidance Note for the Reduction of Obtrusive Light*. Lighting designers should produce vertical illuminance calculations where appropriate.

3.4.3 For residential developments designers should be targeting a post-curfew maximum of 1 lux light intrusion as per the requirements of an E1 zone in Table 3 of ILP GN01/20.

3.5. **Construction, Design & Management Regulations (CDM)**

3.5.1 Lighting design must be carried out by appropriately qualified competent persons in accordance with current CDM regulations. For further information refer to ILP *Guidance Note 4 CDM 2015 Overview*.

3.5.2 For the avoidance of doubt such persons will be members of the Institution of Lighting Professionals (ILP) of Associate grade or above. Designs by non-competent persons or organisations will not be accepted.

3.5.3 A clear note must be appended to the street lighting layout drawings detailing which of the Highway Electrical Design Procedures was used by the designer – see the HEA *Guidance Note CDM 2015 Regulations / Applicability to Highway Lighting Design*.

3.5.4 If a site involves changes to the existing highway network a solely desktop indicative lighting design is not acceptable. If the lighting designer uses Design Method Statement 2 then the Principal Designer will need to produce a Hazard Elimination & Management List (HEML) for inclusion with the detailed design submission.

Warning: Design to Method Statement 2 is not acceptable for S278 or changes to the existing highway.
3.6. Hazard Elimination & Management List (HEML)

3.6.1 As defined within current CDM regulations, all risks at construction, maintenance, decommissioning & replacement must be assessed as an integral part of the design process. Guidance on risk assessment and the use of risk matrices is provided by the Health & Safety Executive.

A Hazard Elimination & Management List must be submitted with all detailed lighting designs.

3.7. HSG47 - Avoiding Danger from Services

3.7.1 The Developer should ensure that underground service locations are identified and that designs are based on up-to-date information. Designers are to “design-out” risks where practicable and to ensure that any significant residual hazards are documented and noted on layout drawings – refer to HSG47 Avoiding Danger from Underground Services.

3.8. G39/1 – Electrical Safety

3.8.1 Designers are to ensure compliance with G39/1 Model Code of Practice Covering Electrical Safety in Planning, Installation, Commissioning & Maintenance of Public Lighting and Other Street Furniture.

3.9. GP10 – Safety During Installation

3.9.1 To be used in conjunction with G39/1, for lighting columns in proximity of High Voltage overhead lines. Refer to: ILP, GP10: Safety During the Installation and Removal of Lighting Columns and Similar Street Furniture in Proximity to High Voltage Overhead Line.

3.10. Street Clutter

3.10.1 Proliferation of street clutter is undesirable. For sign fixing methods see Section 3.27n. Contact tpa@sse.com for permission to make attachments.

The designer shall check that columns are designed to accommodate the loading from the additional weight and windage of any Authority Attachments.
3.11. **Column Height Constraints**

3.11.1. Column heights should be considerate of the scale of the street scene. Column height and luminaire tilt angles are constrained by the road type and environmental context:

Table 1: Column Height & Luminaire Tilt Constraints

<table>
<thead>
<tr>
<th>Road type</th>
<th>Maximum height by environmental zone (1)</th>
<th>Maximum luminaire tilt (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic route “A” class, dual carriageways</td>
<td>10m (zones E1/E2)</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td>12m (zones E3/E4)</td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Main distributor other “A” class</td>
<td>10m (zones E1/E2)</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Secondary distributor “B” & “C” class</td>
<td>8m (zones E1/E2)</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td>10m (zones E3/E4)</td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Road linking main roads & secondary roads</td>
<td>6m (zones E1/E2)</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td>8m (zones E3/E4)</td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Subsidiary roads high traffic flow</td>
<td>6m (zones E1/E2)</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td>8m (zones E3/E4)</td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Subsidiary roads normal or low traffic flow</td>
<td>6m</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>Footpaths, Cycle paths</td>
<td>6m</td>
<td>0° (zones E1/E2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5° (zones E3/E4)</td>
</tr>
<tr>
<td>City/Town Centre (zone E4)</td>
<td>10m</td>
<td>5°</td>
</tr>
<tr>
<td>Village Centre</td>
<td>8m (zone E3)</td>
<td>5° (zone E3)</td>
</tr>
<tr>
<td></td>
<td>6m (zone E1/E2)</td>
<td>0° (zone E1/E2)</td>
</tr>
</tbody>
</table>

1. The Environmental Zones are defined in ILP “Guidance note for the reduction of obtrusive light”
2. Tilt angles are only a guide and optimal tilt to avoid upward light may vary between lanterns – see manufacturers’ luminaire polar curves/Cartesian diagrams
3.12. Lighting Layout Drawing

3.12.1. See the Street Lighting Section on the Technical Guidance web page for an example lighting drawing showing typical information to be included.

3.12.2. Lighting Layout Drawings should contain sufficient information to ensure lighting can be set out and built as designed without scaling of drawings.

3.12.3. Setting out information should be provided for lighting column position and lantern aiming. Spacing and setback tolerances for lighting columns are to be provided including:
 a) Setting out table (or note to see Lighting Reality calculations).
 b) SHE Box & reference to risk assessment.
 c) Tilt/aiming, max/min spacing, setback.

3.12.4. Design drawings are to be supplied at scale of at least 1:500 & maximum size A1 (with general text no smaller than 2mm at original scale) and are to include:
 a) Statement of the design procedure used.
 b) Summary of target lighting class(es).
 c) Boundary showing adoptable extents & any easements required.
 d) Tree planting layout (including anticipated mature canopy extents). For tree pruning refer to HCC Standard Detail HCC11/L/085.
 e) Vehicular crossovers & driveways.
 f) Significant residual hazards.
 g) Each column to be annotated with setback distance from kerb edge.
 h) Clearance distances from columns to hazards to be highlighted where useful.
 i) Environmental and ecological constraints relevant to lighting.
 j) Positions of highway electrical apparatus with lantern aiming.
 k) Key/legend – including materials specification with quantities.
 l) For each LED lantern these attributes need to be identified: luminaire body, CCT, optic, flux output, system wattage and UMSUG codes.
 m) Non-standard columns will require accompanying detail drawings.
 n) Existing & new unit ID numbers.
 o) A schedule of illuminated apparatus, incoming supply cable owner (e.g. DNO, IDNO, private).
 p) Where ‘private’ (non-DNO/IDNO) cable systems are to be used all cable & duct routes are to be shown, along with schematic circuit diagrams (supporting calculations will also be required).
 q) Private lighting installed on housing developments in areas adjacent to highway lighting is to be indicated along with note of the responsible maintenance management companies.
r) Isolux contours should not be shown on the lighting layout drawing. Where Isolux contours are required due planning or environmental issues they should be shown on a separate Isolux contour drawing.

s) Illuminated sign positions, (lantern types, Mayflower, sign face diagram number and mounting height to be included within Key / Legend).

3.12.5. Revised drawings should include a summary schedule of revisions.

3.12.6. Drawings should clearly state their status e.g. “For Review”, “Construction”, “As-built”.

3.13. Designers Narrative

3.13.1. A designer’s narrative will be required with each design, to include a commentary on the decisions for design constraints; explain any deviation from design standards to include set information below where applicable.

a) Standard applied
b) Environmental zone
c) Traffic flow AADT road speed limit
d) Lighting class confirmation (BS5489, CIE 115 Lighting Class Risk Assessment)
e) S/P ratio application where relevant
f) Passive safety risk assessment
g) Column location (setbacks, clearances and clear zones)
h) Sign height
i) Maintenance factor
j) Dimming regime
k) Ecology issues
l) Discuss concerns from HEML
m) Designers risk assessment
n) Mitigation measures and standards relaxation

3.14. Maintenance Factors (new equipment)

3.14.1. Overall maintenance factors are derived from BS5489 methodology. For an HCC PFI-approved IP65 luminaire, such as Philips Luma, the overall maintenance factor is derived thus:

a) 48-month cleaning cycle = 0.94 (no allowance for <6m in E3/4 zones)
b) LED lumen maintenance at 25 years = 0.90
c) “lamp” survival factor (failure fraction) = 1.0
d) Overall maintenance factor = 0.85
3.15. Maintenance Factors (‘legacy’ luminaires)

3.15.1. If the contribution from existing ‘legacy’ luminaires is to be included within design calculations the following maintenance factors apply (existing optic settings used at specific sites will need to be obtained from HCC):

- a) 24W, 36W & 55W PLL = 0.85
- b) 45W & 60W CPO = 0.82
- c) 90W CPO = 0.79
- d) 100W & 150W SONT = 0.88

3.16. Lighting Design Calculations

3.16.1. These should be from Lighting Reality with file names that clearly describe the location and should include:

- a) ‘User notes/title page notes’ – these should describe the target lighting class and detail any deviations from the target lighting class. Detailed commentary should be provided in a separate designer’s narrative.
- b) ‘Roadway’ calculations – are required to demonstrate compliance, determine optimal spacing & optic choice for the site’s predominant road geometries; the original RTMR files are required. Maximum/minimum luminance or illuminance spacing calculation to demonstrate compliance in area calculations and glare limits.
- c) ‘Outdoor’ calculations – are also required for illuminance of irregular areas; multiple calculation grids should be provided, with grids confined to relevant areas to minimise any distorting effects on average illuminance values. Luminaires should generally be aimed perpendicular to the adjacent kerb or road centre line. To demonstrate the correlation of design calculations & column positions, the lighting layout drawing with relevant topographic information (dwg / dxf) is to be used as the base drawing within Lighting Reality.
- d) Vertical grids shall be provided to building facade’s where contours exceeding permitted values of light into windows for relevant environmental zone bisect properties.
- e) PDF & ‘read-only’ files (if supplied additionally as a record) should exclude greyscale and the results should be displayed.

3.17. Design dimming / Variable Light Output

3.17.1. Design work should achieve the target lighting classes (as specified in the site-specific design brief) without recourse to arbitrary dimming.

3.18. Conflict Areas, crossings, traffic calming, cycleways

- a) Roundabouts or complex junctions - the design may be deconstructed into multiple calculation grids, with each conflict area limited to include
the area of conflict ahead of the driver and the adjacent area where a conflicting body might approach from.

b) **Zebra crossings** – see ILP document TR12 *Lighting of pedestrian crossings* and also HCC Standard Detail drawing HCC11/L/025.

c) **Signalised crossings** are generally not considered to need additional lighting.

d) **Traffic calming** – see ILP document TR25 *Lighting for traffic calming features* (see also Technical Guidance Note TG11 - Traffic Calming).

e) **Cycleways & shared surface paths** – see ILP document PLG23 – Lighting for Cycle Infrastructure (see also Technical Guidance Note TG10 - Footways, Cycleways, Shared Surfaces).

f) **Luminous intensity class** (G class) of luminaires for conflict areas should not be lower than the approach road. Luminance intensity class G4 G5 or G6 should be used, reference BS 13201- part 2 annex clause A.3.4.

3.19. **Apparatus Positioning & Clearances**

3.19.1. Apparatus positioning should be in accordance with good industry practice to avoid restricting pedestrian movement whilst ensuring the lighting unit can be safely maintained. See also section 3.25 for column location risk assessment evaluation guidance.

a) **Apparatus is to be sited within the highway** – easements will be required where equipment is sited in private land (easement size shall be a minimum 1.0m radius of the column and connected to the highway).

b) **Clearance from carriageway** – shall not be less than the *minimum* defined in Table 2. Greater clearances may be desirable. All clearances are to be itemised on detailed design layout drawings.

<table>
<thead>
<tr>
<th>Speed Limit (mph)</th>
<th>Minimum horizontal clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.8m</td>
</tr>
<tr>
<td>30</td>
<td>0.8m</td>
</tr>
<tr>
<td>40</td>
<td>1.0m</td>
</tr>
<tr>
<td>50</td>
<td>1.0m</td>
</tr>
<tr>
<td>60</td>
<td>1.5m</td>
</tr>
<tr>
<td>70</td>
<td>1.5m</td>
</tr>
</tbody>
</table>

1 - Table derived from BS5489-1:2013, 4.3.3.3 – Table 2 (please note that this TG13 table refers to “speed limit” not “design speed”)

2 - Clearance is subject to other factors, e.g. passive safety risk assessment
c) Footways – columns should generally be sited at the rear of the footway.

d) Verges – where verges are provided between carriageway and footway then columns may be sited in the verge, provided that minimum horizontal clearances are maintained (as Table 2).

e) Clearance from crossovers/driveways – minimum lateral clearance of 0.8m to the path of any vehicle crossover should be maintained.

f) Kerbs <100mm - where footways are delineated by kerbs with 25mm upstand then columns should not be planted in such footways unless they are adjacent to permanent solid features behind (e.g. adjacent wall).

g) Shared surfaces - residential roads with shared surface arrangements will require careful consideration of column positions; there is currently no framework whereby HCC can adopt columns that are not protected by conventional kerb upstand and clearance from carriageway.

h) Clearance from buildings – such clearance as necessary to avoid disturbance to foundations or structures.

i) Hazards – columns are to be positioned to avoid conflict with hazards and to allow safe maintenance; working widths for barriers and road restraint systems should be noted.

j) Door alignment – column doors should be ‘downstream’ from adjacent traffic flow (such that opening a door requires a person to face the oncoming traffic).

k) Boundaries - ideally columns are to be sited on property boundaries.

l) Sightlines – sightlines from vehicular access/gateways should not be blocked or obscured.

m) Footpaths – raise & lower columns are to be used where access via MEWP cannot be guaranteed and to be positioned so that apparatus can be safely maintained in the future.

n) Cycle paths – columns shall be set back a minimum 0.5m clear of cycle paths such that they do not obstruct overhanging handlebars, as per ILP TR23 Lighting for Cycle Tracks.

o) Wall-mounted lanterns - may be considered. Minimum vertical clearances above highway shall be maintained. On new developments wall-mounted apparatus requires a Deed of Dedication, not a Wayleave Agreement.

p) Signs – Any signs fixed to columns should give a minimum clearance above footway of 2.1m (2.4m for cycleways) and 0.45m clearance to kerb.

q) Overhead power lines – early consultation is required for proposals in the proximity of overhead power lines.
3.20. **Highway Trees & Lighting**

3.20.1. Lighting should be planned as an integral part of the street layout, including any planting.

a) **Horizontal clearance** - maximum growth of a tree canopy should be >5m from any lantern.

b) **Vertical clearance** - in some cases (e.g. with mature trees) it may be possible to locate columns beneath the tree canopy provided that ≥1.6m clearance is kept above the lantern.

3.20.2. See Standard Detail HCC11/L/085 for details of required clearances.

3.20.3. For further guidance regarding trees, see Technical Guidance Note TG15 – Trees, Landscape and Ecology.

3.21. **Ecology & Lighting**

3.21.1. Lighting design of any previously unlit area needs to consider ecological impacts. Lighting proposals should avoid or minimise the potential for impacts on existing or created habitats. See ILP GN08/18 “Bats and Artificial Lighting in the UK”

3.21.2. It may be possible to mitigate lighting impacts through other measures such as:

a) **Lantern tilt** - may be adjusted (the optimal tilt to minimise spill light depends on the optical control characteristics).

b) **Louvres** - may be specified (internal louvres preferably before external louvres or shields).

c) **Light sources** - may be altered to warmer colour temperature and spectral distribution.

d) **Reducing the mounting height** - of lanterns sited near environmentally sensitive areas.

e) **Reducing target light levels** - in sensitive areas; where a development abuts open country (i.e. where two environmental zones meet) a buffer zone (c.15m) within the development may be considered to belong to the darker environmental zone and therefore within that strip the specification of target light levels, lantern tilt, light source and lighting times may differ from the rest of the site.

f) **Positioning lights sensitively** – e.g. by avoiding positions at ecologically sensitive areas of concern.

g) **Use suitable optic photometry** – to reduce lighting footprint.
3.22. **Non-Standard Apparatus & Committed Sums**

3.22.1. Departure from standard materials will require the specific technical approval by the HCC’s Street Lighting Section. Non-standard apparatus will incur commuted sum charges.

3.22.2. Power supplies should be provided via mains DNO networks; with few exceptions private cable networks are non-standard and will incur commuted sum charges.

3.23. **Power Supply**

3.23.1. The Developer is to procure unmetered low voltage electricity supplies for all apparatus (single-phase 230v earthed mains power supply). DNO - by preference, the supply should be from the local/host DNO. Scottish & Southern Energy is the Distribution Network Operator within Hampshire. Developers are advised to allow sufficient time for liaison with the DNO in advance of works (email: connections@sse.com).

b) **Private cable networks** – may be specified where mains supply cables cannot be provided – e.g. for apparatus such as illuminated signs sited on traffic islands (see Section 3.32) or for passively safe apparatus (see Section 3.31). Supporting calculations should be provided. Private cable networks proposed in other circumstances will incur commuted sum charges (see Section 3.22).

3.23.2. In order to commission lighting units developers will first need to sign an Unmetered Connection Agreement (UmCA) with the host DNO (SSE) & sign-up with an electricity supplier – for more information see https://www.ssen.co.uk/ConnectionsYouHaveaChoice/ and also https://www.ssen.co.uk/UnmeteredConnectionsFlowchart/

3.23.3. Power consumption and UMSUG codes for all units should be recorded on the detailed design drawings.

3.24. **Electrical Test Data**

3.24.1. The Developer must carry out electrical testing of apparatus in accordance with the requirements of the current edition of BS 7671 (the IEE Wiring Regulations) which identifies the electrical testing required, suitable Test Certificate format for recording results & standard methods of testing.

Test certificates must not be more than 12 months old at the time of pre-accrual inspection
3.24.2. All test results are to be recorded and presented to the Highway Authority before accrual.

 a) **BS 7671 tests for apparatus** must include:
 - Continuity of protective conductors including main and supplementary equipotential bonding.
 - Insulation resistance at a test voltage of 500V to be not less than 1.0 MΩ.
 - Insulation resistance at a test voltage of 500V to be not less than 6.0 MΩ.
 - Insulation of the site-built assemblies.
 - Polarity, including the continuity of circuit conductors.
 - Earth fault loop impedance at every fuse junction unit.
 - Operation of residual current devices where necessary.

 b) **BS 7671 tests for private cable networks** must additionally include:
 - Cable Sheath Insulation Test.
 - Earth electrode Resistance.

3.24.3. Electrical test certificates should be referenced against a named As-Built drawing and the column/sign numbers should correlate.

3.24.4. Each separately fused lantern should have test certificate.

3.25. Passive Safety Risk Assessment

3.25.1. HCC uses the UK Roads Liaison Group (UKRLG) document “Provision of Road Restraint Systems on Local Authority Roads” – this uses speed limit and traffic flow criteria to determine which risk assessment method to use. The lighting designer should liaise with an appropriately qualified Highway Design Engineer to determine the appropriate column type, location and/or need for protection required. An appropriate assessment method in accordance with Table 3 shall be used.

Table 3: Applicable methods for determining when a RRS is required

<table>
<thead>
<tr>
<th>Traffic Flow (AADT)</th>
<th>Speed Limit (MPH)</th>
<th>Guidance to use</th>
<th>Risk assessment method</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5000</td>
<td>≥50</td>
<td>CD 377</td>
<td>RRRAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ILP TR30</td>
<td>TR30 Flowchart</td>
</tr>
<tr>
<td>>5000</td>
<td><50</td>
<td>UKRLG/DIT</td>
<td>Relevant UKRLG/DIT</td>
</tr>
<tr>
<td>≥50</td>
<td></td>
<td>Provision of RRRAP</td>
<td>Provision of Road Restraint Systems on Local Authority Roads</td>
</tr>
<tr>
<td>≥50</td>
<td></td>
<td>Provision of Road Restraint Systems on Local Authority Roads</td>
<td></td>
</tr>
<tr>
<td><5000</td>
<td><50</td>
<td>UKRLG/DIT</td>
<td>Relevant UKRLG/DIT Provision of RRRAP</td>
</tr>
<tr>
<td><5000</td>
<td><50</td>
<td>Provision of Road Restraint Systems on Local Authority Roads</td>
<td></td>
</tr>
</tbody>
</table>

Relevant UKRLG/DIT Provision of Road Restraint Systems on Local Authority Roads method (A,B,C as appropriate)
Street lighting columns shall not be positioned within the ‘working width’ of Road Restraint Systems

See also Technical Guidance Note TG14 “Road Restraint Systems and Passive Street Furniture” for further guidance.

3.26. **Switching & Mayflower Remote Monitoring System**

3.26.1. New lighting will need to be fitted with nodes to enable their correct switching remotely. HCC specification requirements:

 a) Before accrual, all lanterns are to be commissioned with Mayflower CMS nodes which allow individual streetlights to be monitored and switched and for light output to be dynamically controlled.

 b) Individual Mayflower CMS nodes fit into a patented 6-pin socket (S6000) built into each road lighting lantern. For some specialist lanterns (e.g. subway lighting units) internal nodes are fitted inside the lantern. For illuminated sign lights internal nodes are fitted inside the lantern.

 c) Each individual lighting scheme incorporates at least one Sub-Master unit to link with the back-office central control system. The Sub-Master Unit (which also fits into the 6-pin S6000 socket) should be fitted to a lantern which is near to the population of nodes that it controls. Once energised the Sub-Master will control any individual node on nearby lanterns.

 d) If required Mayflower can advise on the optimum location for the Sub-Master unit.

 e) The 6-pin S6000 socket can accommodate a standard NEMA-type photocell, which could be fitted temporarily, allowing installation of the Nodes & Sub-Master at a later date (Pre-Accrual); any conventional photocells fitted temporarily should be set to switch on at 35 lux & to switch off at 18 lux.

 f) Each Sub-Master and Node is identified by a unique sixteen-digit barcode number. Mayflower provides barcode stickers with the apparatus: one sticker is to be mounted in the base of each column (suggested that the top of the supply cut-out should be wiped clean and the sticker affixed) and one sticker on a plan/column installation sheet which the Developer shall present to Hampshire County Council prior to Accrual.

3.26.2. For further details please contact: Mayflower Complete Lighting Control, Solent Park, Walton Road, Portsmouth, Hampshire PO6 1UJ. Email: enquiries@mayflowercontrol.com - tel. 0345 076 7664
3.27. **Apparatus – Lighting Columns**

a) See HCC Standard Details [HCC11/L/010, 015 and 020](#).

b) Columns are to be manufactured in accordance with BS EN 40 & PD6547, and with a design life of 50 years.

c) Columns shall be tubular steel hot-dip galvanised with planted root (see also 3.10.1 and Table 4 below).

d) Columns will be “post-top” style. Outreach brackets may only be specified in agreement with HCC’s Street Lighting Section.

e) Column corrosion protection: root protection internal/external to be two-pack extended cure MIO; finish to be two-pack polysiloxane, (colour as specified).

f) Column painting to be factory-finish. Finish colour to be “Mineral” green - BS4800 12 B 21 - unless otherwise specified with the prior agreement of the HCC Street Lighting Team. Columns and lanterns are to colour-match.

g) Standard columns shall be designed to be capable of accepting the loads indicated in Table 4. If greater loads are required, then “heavy-duty” column design will need to be confirmed with detail drawing & manufacturer’s design certificate at the design stage.

<table>
<thead>
<tr>
<th>Column height/type</th>
<th>Lantern weight</th>
<th>Lantern windage</th>
<th>Sign area</th>
<th>Sign weight</th>
<th>Sign eccentricity</th>
<th>Sign drag coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/6m post-top</td>
<td>10kg</td>
<td>0.13m²</td>
<td>0.3m²</td>
<td>5.0kg</td>
<td>0.4m</td>
<td>1.8</td>
</tr>
<tr>
<td>8m post-top</td>
<td>11.5kg</td>
<td>0.145m²</td>
<td>0.3m²</td>
<td>5.0kg</td>
<td>0.4m</td>
<td>1.8</td>
</tr>
<tr>
<td>10m post-top</td>
<td>21kg</td>
<td>0.22m²</td>
<td>0.3m²</td>
<td>5.0kg</td>
<td>0.4m</td>
<td>1.8</td>
</tr>
<tr>
<td>12m post-top</td>
<td>21kg</td>
<td>0.27m²</td>
<td>0.3m²</td>
<td>5.0kg</td>
<td>0.4m</td>
<td>1.8</td>
</tr>
<tr>
<td>5/6m post-top “raise & lower”</td>
<td>9.5kg</td>
<td>0.055m²</td>
<td>0.3m²</td>
<td>5.0kg</td>
<td>0.3m</td>
<td>1.8</td>
</tr>
</tbody>
</table>

h) Door lock to be M8 bolt with anti-vandal hexagonal head with integral centre-pin.

i) Column baseboards at least equivalent to the door size and made of treated hardwood of sufficient size to accommodate all control equipment and service cut-outs; boards must be positively secured to the column by two flush fitting screws.
j) Earthing terminal to be 8mm diameter brass terminal with brass washers & nuts.

k) Columns to be supplied with manufacturer-applied ground-level / planting depth marker tape affixed to the root/base, and marker tape to remain attached after installation.

l) Any sign attachments agreed shall comply with Table 4. No signs >0.3m² to be attached to columns.

m) No attachments shall be fitted to mid-hinged columns.

n) Attachments to columns, where agreed, shall be fixed with circumferential clamps of stainless steel AISI Grade 201 with neoprene strips placed under the clamps to prevent damage to the column or its protective coating.

o) Where planted root columns are not viable a flange base with designed foundation may need to be specified.

p) The column foundation details shown on drawings HCC11/L/035 & 040 assume poor soil conditions; column manufacturers detail drawings should be cross-checked to ensure all requirements are met (PD6547).

q) Column data sheets and manufacturer’s standard detail drawing to be provided before accrual (Manual of Contract Documents for Highway Works, Specification for Highways Works, Appendix 13/2 and 13/3 Column and Bracket Data Sheets).

3.28. Apparatus – Illuminated Signs

3.28.1. Signing requirements as per the current edition of TSRGD and BS EN 12899-1.

3.28.2. See also Technical Guidance Note TG12 – Signs and Bollards

3.28.3. HCC specification for illuminated road signs is as follows:

 a) Hot-dip galvanised steel wide base post (in Conservation Areas the finish should match the lighting columns).

 b) Door lock to be M8 bolt with anti-vandal hexagonal head with integral centre-pin.

 c) Baseboards at least equivalent to the door size and made of treated hardwood of sufficient size to accommodate all control equipment and service cut-outs; boards must be positively secured to the column by two flush fitting screws.
d) Earthing terminal to be 8mm diameter brass terminal with brass washers & nuts.
e) Illuminated sign plates to class RA2 BS EN 12899.
f) Sign light units to be Simmons signs integrated LED LUA/LUB with die-cast aluminium body (or similar approved).
g) Sign lighting units to be polyester powder-coated to finish Aircraft Grey (unless otherwise specified).
h) Sign light output determined by size of sign plate, as follows: 600mm Ø sign plates 3x1w integrated LUA; <=750mm Ø sign plates 6x1w integrated LUA; >750mm sign plates LUB 10x1w LED.
i) Sign lighting units to be fitted with internal Mayflower node.
j) Sign lighting units require an electronic non-dimmable ballast.

3.29. Apparatus - Road Lighting Luminaires

3.29.1. All new developments will use LED luminaires. These will generally be of neutral white colour temperature (4,000k) though there may be applications where warm-white (3,000k) is required due to environmental reasons, or within National Parks. Refer to Appendix A.

a) Lantern body & canopy to be powder-coated, paint colour to match columns.
b) Standard colour is mineral green [BS 4800 12 B 21] unless otherwise specified. In some areas the use of “black” [BS 4800 00 E 53] may be specified.
c) Ballast to be electronic & fully dimmable via DALI protocol.
d) Switching – all lanterns to be fitted with Mayflower 6-pin S6000 socket & external node (except Subway & Underpass lighting units and some specialist lanterns which are to be fitted with Mayflower internal node).
e) LEDs on roadway lighting are generally to be 4,000k neutral white LEDs – unless a different CCT is specified by HCC’s Street Lighting Section or is required for compliance with ecological good practice – see Section 3.21).
f) Where “zebra” asymmetric luminaires are specified (e.g. at a Zebra crossing) these are to be of CCT a single step cooler than the adjacent roadway lighting (see HCC11/L/025).

3.30. Apparatus - Internal Wiring of Columns & Signs

3.30.2. DNO supply cables to be terminated in single-phase double pole isolator manufactured from semi-crystalline thermal plastic with improved heat
resistance with HRC fuses to BS EN 60269 (e.g. Lucy Titan 2). Terminal shields will be fitted to prevent accidental contact with live conductors.

3.30.3. Internal wiring to lantern to be multi-core PVC flexible (H05VV-F or H07RN-F) – for columns up to 10m height cores to be 1.5mm² – for columns over 10m height cores to be 2.5mm².

3.30.4. Earthing conductor to be 10mm² PVC insulated coloured green/yellow; connections to be by bolted crimped terminations.

3.30.5. Internal cabling to be neatly clipped to the backboard by use of 2no. fixed plastic cable clips securing the flex to the backboard. All fixing screws to be stainless steel as per Standard Detail Drawing HCC11/L/060.

3.30.6. Backboards to be securely fixed to column base.

3.31. Apparatus - Passively Safe Equipment

3.31.1. Apparatus is to be selected in accordance with the requirements of BS EN 12767:2019 (Table NA1) and as outlined in the ILP’s TR30 ‘Guidance on the Implementation of Passively Safe Lighting Columns and Signposts’. See also Technical Guidance Note TG14 “Road Restraint Systems and Passive Street Furniture” for further guidance.

3.31.2. Columns are to be installed in retention sockets (such as NAL) with foundations in accordance with manufacturer’s instructions. Where possible sockets are to be restricted to a maximum depth of 600mm for ease of installation and on-going maintenance. However deeper sockets are permitted where it is not possible to provide a foundation of sufficient size for a 600mm socket.

3.31.3. Electrical disconnection system to be NAL SIS system. SIS impact sensor to be installed in each item of passively safe apparatus. SIS monitoring unit to be fitted in an above-ground location (lamp column, wide-base sign post or feeder pillar) located outside the clearance zone.

3.31.4. Mains DNO/IDNO supply may not be provided with passively safe equipment.

Passively safe equipment must be supplied by a private cable system.
3.32. Private Cable, Ducting, Feeder Pillars

3.32.1. See HCC Standard Details HCC11/L045, 050, 055, 070.

3.32.2. Pillars, ducts and cables are to be used exclusively for street lighting and illuminated signs.

3.32.3. Private cables to be laid in 100mm diameter orange PVC ducts (DNO cables only in black duct).

3.32.4. Ducting systems to include necessary chambers/draw pits.

3.32.5. Cable ducts below footways to be >450mm below finished level; ducts below carriageways to be >600mm below finished level. See NJUG “Guidelines on the Positioning and Colour Coding of Underground Utilities Apparatus”.

3.32.6. 150mm-wide yellow heavy gauge PVC tape marked “street lighting” to be placed over private cables/ducts.

3.32.7. Cable ducts to be installed with draw cords.

3.32.8. Private cables to be XLPE\SWA\PVC.

3.32.9. All cut outs must have HRC fuse in pull-out carrier and provision for Live, Neutral & Earth cable connections including a PME link.

3.32.10. All outgoing circuits are to be labelled by an encapsulated schematic drawing detailing the outgoing cable route & the population of lighting units on each circuit.

3.32.11. Feeder pillars to be installed with a minimum of 1.0m² hard-standing provided at ground-level in front of the pillar door.

3.32.12. Feeder pillars not to include heaters or internal lights.

3.32.13. For electrical testing see Section 3.24.

The following flowcharts and checklists detail the steps required from initial enquiry to accrual. Providing the required information at each stage as detailed in the checklists will enable the accrual process to progress smoothly.

Design Process Flowchart
Required documents submitted by Developer for Initial Design Brief Request

<table>
<thead>
<tr>
<th>Document</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site location plan</td>
<td>✓</td>
</tr>
<tr>
<td>Draft layout drawings showing the highway adoptable areas, detail of adjoining schemes, site phasing plan</td>
<td></td>
</tr>
<tr>
<td>Other relevant information – e.g.: ecology reports, design codes, planning conditions, predicted daily traffic flow, etc.</td>
<td></td>
</tr>
<tr>
<td>Proposed speed limit of road, design speed, characteristic speed of traffic and traffic accident data</td>
<td></td>
</tr>
<tr>
<td>Proposed existing sign details, proximity to hazards (e.g. navigable waterways, airports, railways to be noted), other roads or buildings that could be impacted on by lighting installation</td>
<td></td>
</tr>
<tr>
<td>Any road restraint details, BS5489/CIE 115 Lighting Class Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>Presence of traffic calming features and confirmation of road surface materials (including reflectance characteristics)</td>
<td></td>
</tr>
</tbody>
</table>

Required documents submitted by Developer for Detailed Design

<table>
<thead>
<tr>
<th>Document</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Drawing Register</td>
<td></td>
</tr>
<tr>
<td>Location plan – (to show phases of development)</td>
<td></td>
</tr>
<tr>
<td>Lighting layout drawing & specification (see 3.12)</td>
<td></td>
</tr>
<tr>
<td>Isolux plot/drawing (see 3.12.4.r)</td>
<td></td>
</tr>
<tr>
<td>Designers narrative (see 3.13)</td>
<td></td>
</tr>
<tr>
<td>Hazard Elimination & Management List (see 3.6)</td>
<td></td>
</tr>
<tr>
<td>Lighting design calculations with designer commentary – including full RTMA & RTMR files (see 3.16)</td>
<td></td>
</tr>
<tr>
<td>Site clearance drawing (if any lighting apparatus are affected by the works (including ID numbers) - may be in layout drawing)</td>
<td></td>
</tr>
<tr>
<td>Confirmation of LV supply network owner - host DNO / IDNO (see 3.23)</td>
<td></td>
</tr>
<tr>
<td>Private cable calculations (if applicable – see 3.23, 3.32)</td>
<td></td>
</tr>
<tr>
<td>Illuminated sign details (if applicable. To include a schedule of sign faces & dimensions, specification of sign light – see 3.28)</td>
<td></td>
</tr>
<tr>
<td>Special (“heavy-duty”) column requirements (if applicable – see 3.27)</td>
<td></td>
</tr>
<tr>
<td>Relevant contract documents, schedules & appendices</td>
<td></td>
</tr>
<tr>
<td>Initial inventory information (See the Street Lighting section of the Technical Guidance web page)</td>
<td></td>
</tr>
<tr>
<td>Written confirmation that the design submission complies with the Accrual Required Standards (see 5.2)</td>
<td></td>
</tr>
</tbody>
</table>
4.1. **Existing Apparatus Within the Works – De-accrual & Suspension**

4.1.1. Any existing apparatus due to be removed or altered will need to be **de-accrued** from the PFI contract.

4.1.2. Any existing apparatus that is temporarily made inaccessible for maintenance (e.g. barred-off) will need to be suspended from the PFI contract.

4.1.3. The Developer is responsible for maintenance of all de-accrued and suspended apparatus within their works until it is formally inspected and
re-accrued. Maintenance should be in accordance with industry good practice (see Section 4.6 below) with full records to be kept of any works.

4.2. **HEA Contractors**

4.2.1. The Developer is to identify to HCC which accredited (HEA, NICEIC) contractor has been appointed for the street lighting and illuminated sign installation and maintenance works.

4.2.2. HCC’s Street Lighting PFI contractor (SSE Enterprise Lighting Services) can provide a lighting installation service if required. Please email HampshireDesignChecks@sse.com.

4.3. **Temporary Signing**

4.3.1. Temporary signs may be fitted to existing lamp columns if the columns have the structural capacity – contact tpa@sse.com for permission (for fixing specification see Section 3.27.n)

4.4. **Labelling of Apparatus**

4.4.1. All apparatus should be numbered as agreed with HCC’s Street Lighting Section - sequentially by named road. If works affect existing roads, then sequential re-numbering of existing apparatus may be required. See Standard Detail HCC11/L/075.

4.4.2. Where appropriate (e.g. within the “vicinity zone” of overhead power cables) an “overhead warning” label should be applied to column shaft. See Standard Detail HCC11/L/080.

4.4.3. Where a lighting column or illuminated sign holds the isolation point for an outgoing private sub-circuit then the column will be clearly marked externally to identify this, and internally to identify the apparatus supplied via the private sub-circuit.

4.5. **Cable Schematics**

4.5.1. Isolation points for any private networks (e.g. - feeder pillars, or columns & signs with additional outgoing sub-circuits) shall have enclosed in the base compartment an encapsulated schematic drawing detailing the outgoing cable route & the lighting units on each circuit.

4.6. **Maintenance before Accrual**

4.6.1. The Developer’s duty of care includes maintenance of lights within the works in accordance with good industry practice and shall include:

 a) **Periodic maintenance** (cleaning, visual inspection, electrical test).
b) **Reactive repairs** - prompt identification and repair of operational faults, emergency repairs as necessary, and maintaining records of these activities.

c) **Lamp change** - lamps are to be replaced within 6 months of the proposed accrual date (not LEDs).

| !important | The Developer is responsible for ensuring all temporary, suspended, de-accrued and new un-adopted lighting units are maintained in accordance with good industry practice until such time as the units are accrued. |

4.6.2. The Developer may choose to enter an interim maintenance contract with the Service Provider, who will then ensure the units are maintained to a satisfactory condition to enable easy accrual onto the PFI Contract at the point of adoption of the S278/S38 works – contact hsl@hants.gov.uk.
Accrual Process Flowchart

Developer reviews completed lighting works against Accrual Inspection list to ensure all items are complete (see 4.7)

Accrual Inspection List

Developer confirms works complete/ready for pre-accrual inspection

Pre-Accrual Checklist comes in here

Submission of paperwork (5 Business Days Min)

HSL Issue Service Provider letter (24hrs)

Service Provider response (within 10 Business Days)

Has Service Provider responded in 10 business days?

Yes

Are the works satisfactory?

Yes

No

No

Street Lighting Accrual Completed

Developer closes their energy supply account to equipment

HCC HDA Invoice

Developer for accrual and inspections fee

Inventory database/Unitary charge updated (24hrs)

HSL confirm Accrual via formal monthly letter to Service Provider (24hrs)
4.7. **Pre-Accrual Inspection**

4.7.1. HCC will arrange a thorough initial inspection of apparatus to be offered for accrual. Repeat inspections will be charged separately. Requests for inspection should be accompanied by the documents detailed in the Pre-Accrual Inspection Checklist.

4.7.2. Table 5 summarises the inspection criteria. This is provided as an audit list for the person undertaking the final inspection of site before it is put forward for a Pre-Accrual inspection. This is an example of some of the requirements under the inspection and is not exclusive nor gives the guarantee of the site passing first time.
<table>
<thead>
<tr>
<th>Item</th>
<th>Description of Inspection</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planting depth</td>
<td>Remove door and measure from the bottom of aperture to finished ground level</td>
</tr>
<tr>
<td>2</td>
<td>Reinstatement</td>
<td>Check quality final reinstatement</td>
</tr>
<tr>
<td>4</td>
<td>Column alignment</td>
<td>Is the pole upright and plumb?</td>
</tr>
<tr>
<td>5</td>
<td>Bracket alignment</td>
<td>Is the bracket Installed as designed?</td>
</tr>
<tr>
<td>6</td>
<td>Bracket outreach</td>
<td>Is the bracket outreach as designed?</td>
</tr>
<tr>
<td>7</td>
<td>Column protective system</td>
<td>Is colour / finish correct and undamaged?</td>
</tr>
<tr>
<td>8</td>
<td>Numbering</td>
<td>Is unit numbered correctly and in correct place with Logo?</td>
</tr>
<tr>
<td>9</td>
<td>Location of unit</td>
<td>Check for compliance with design</td>
</tr>
<tr>
<td>10</td>
<td>Lighting column door</td>
<td>Check for correct orientation</td>
</tr>
<tr>
<td>11</td>
<td>Locking device</td>
<td>Check that the lock operates correctly, the door fits securely, and the door lock is greased.</td>
</tr>
<tr>
<td>12</td>
<td>Column root</td>
<td>Check that correct root protection is evident</td>
</tr>
<tr>
<td>13</td>
<td>Lighting column height</td>
<td>Check that the height complies with the Output Specification</td>
</tr>
<tr>
<td>14</td>
<td>Lighting columns</td>
<td>Check that where vehicular access is restricted or where maintenance cannot be carried out by a purpose-built vehicle a raising and lowering column has been used.</td>
</tr>
<tr>
<td>15</td>
<td>Position of unit</td>
<td>Check that the units have been Installed in Authority owned land or that wayleaves/easements have been obtained.</td>
</tr>
<tr>
<td>17</td>
<td>Statutory (Authority) attachments</td>
<td>Check that statutory signs are where they need to be.</td>
</tr>
<tr>
<td>Item</td>
<td>Description of Inspection</td>
<td>Tolerances</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>18</td>
<td>Sign light attached to lighting column Check that hole in column has been adequately sealed to prevent ingress of water.</td>
<td>None</td>
</tr>
<tr>
<td>19</td>
<td>Sign light wiring Check correct cables, sleeving, wiring is neat, insulation at terminals and terminals are tight.</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>Lighting column type Suitability for any proposed banners, hanging baskets, festive illuminations etc.</td>
<td>None</td>
</tr>
<tr>
<td>24</td>
<td>Redundant apparatus removed Check redundant units have been removed and that permanent reinstatement has been carried out.</td>
<td>None</td>
</tr>
<tr>
<td>25</td>
<td>Illuminated Traffic Signs Check the sign face type, post location, orientation and door position.</td>
<td>None</td>
</tr>
<tr>
<td>26</td>
<td>Illuminated Traffic Bollards Check the shell type, base to the correct depth and base opens in the correct direction.</td>
<td>None</td>
</tr>
<tr>
<td>27</td>
<td>Electrical test certificate Check that a test certificate is provided and complete</td>
<td>None</td>
</tr>
<tr>
<td>29</td>
<td>Luminaire alignment Is luminaire straight or twisted?</td>
<td>Visual</td>
</tr>
<tr>
<td>30</td>
<td>Luminaire bowl clean Is the Luminaire bowl clean and free from blemishes?</td>
<td>Visual</td>
</tr>
<tr>
<td>31</td>
<td>Luminaire optic setting Is the optic setting as per design?</td>
<td>None</td>
</tr>
<tr>
<td>32</td>
<td>Correct lamp, Luminaire and Control Gear Check that the correct lamp, gear and Luminaire are as per the design.</td>
<td>None</td>
</tr>
<tr>
<td>33</td>
<td>Switching device Is the correct switching device fitted and set?</td>
<td>None</td>
</tr>
<tr>
<td>34</td>
<td>Internal wiring Check the correct cable has been used, wiring is neat, insulation at terminals is maintained and that all terminations and earth bonds are tight. Check that all electrical apparatus is securely attached to the backboard. Check that the backboard is securely fixed.</td>
<td>None</td>
</tr>
<tr>
<td>35</td>
<td>Double pole isolation Where relevant check if double pole isolation has been installed.</td>
<td>None</td>
</tr>
<tr>
<td>36</td>
<td>Protection device Check that the protection device is correctly installed and rated.</td>
<td>None</td>
</tr>
<tr>
<td>Item</td>
<td>Description of Inspection</td>
<td>Tolerances</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>37</td>
<td>Private supply cables</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Check that private supply cables are correctly sized, ganged and identified as to what they feed.</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Feeder Pillars / locations</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Check for condensation, distribution board, rating of protection devices, wiring is neat, all terminations, ganding, insulation, cables sizes, cables are identified, earthing and schematic cable diagram.</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Lighting design – trees & vegetation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Check that the effect of trees and vegetation has been adequately accommodated in the design and positioning of columns.</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>General – Lamp operation</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Check that the lamp strikes.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>General - Condition</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Check for any signs of damage to any item of Apparatus.</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>General - Reporting</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Issue Certificates of Compliance and Non-compliance and identify Snagging Items in accordance with the output specification.</td>
<td></td>
</tr>
</tbody>
</table>
5. **Providing Relevant Documentation**

Schemes which are submitted with the relevant information are more likely to go through the process quicker due to a reduction of waiting time trying to locate the documents.

Submissions that have followed TG13 guidance are more likely to have all the information needed by both HCC and SSE and the likelihood of any defects are reduced at the beginning of the process.

5.1. **Energy**

5.1.1. Following Accrual/Adoption it is for the Developer to inform their energy supplier that the development is now within the scope of the HCC energy contract.

5.2. **Confirmation of Accrual Required Standards**

5.2.1. Below is an example of a suitable form of words for inclusion within a letter of confirmation from the Developer that the design submission complies with the PFI Accrual Required Standards.

```
We write in relation to illuminated apparatus proposed for the above project. This letter confirms that the apparatus meets the requirements of the Street Lighting PFI in that:

a) All apparatus has been designed in accordance with the Hampshire County Council standard development specification current when the agreement was signed.

b) All apparatus shall be new at the time of installation and supported by relevant manufacturer’s guarantees. Such guarantees will be transferred to Tay Valley Lighting (Hampshire) Limited at the point of Accrual. All apparatus has been sited so as to minimise, in so far as is reasonable and practical, nuisance, danger and obstruction to all residents, businesses and users of the highway.

c) All columns and signposts shall be manufactured in accordance with BS EN 40 and have residual capacity for additional sign attachments of 0.3m² in area.

d) All illuminated apparatus shall be installed and tested in compliance with BS7671 with certificates which are no more than 12 months old at the time of the Pre-Accrual inspection request.

e) Lamps shall be no more than 6 months old at the time of Accrual (where not LEDs).

f) All installations shall be installed in such a way that trees or any other foliage on the site does not interfere with the level of lighting.
```
These statements are based on the information contained within the specific documents listed below and this information only. Any other drawings and documentation will not be considered as approved and will only be considered as supporting information.

<table>
<thead>
<tr>
<th>Author</th>
<th>Document ref</th>
<th>Document title</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.2. Below is an example of a suitable form of words for inclusion within a letter of confirmation from the Developer that the installation complies with the PFI Accrual Required Standards (required when the PFI contractor has not been used as contractor for the street lighting or illuminated sign works):

We write in relation to illuminated apparatus installed in the above project. This letter confirms that the apparatus meets the requirements of the Street Lighting PFI in that:

a) All apparatus has been installed in accordance with the documents listed below (including all notes & comments).

b) All apparatus has been installed in accordance with the Hampshire County Council standard development specification current when the agreement was signed.

c) All apparatus was new at the time of installation and supported by relevant manufacturer’s guarantees. Such guarantees will be transferred to Tay Valley Lighting (Hampshire) Limited at the point of Accrual. All apparatus has been sited so as to minimise, in so far as is reasonable and practical, nuisance, danger and obstruction to all residents, businesses and users of the highway.

d) All columns and signposts installed have been manufactured in accordance with BS EN 40 and have residual capacity for additional sign attachments of 0.3m² in area.

e) All illuminated apparatus has been installed and tested in compliance with BS7671 with certificates which are no more than 12 months old at the time of the Pre-Accrual inspection request.

f) Lamps are no more than 6 months old at the time of Accrual (where not LEDs).

g) All installations have been installed in such a way that trees or any other foliage on the site does not interfere with the level of lighting.
These statements are based on the information contained within the specific documents listed below and this information only. Any other drawings and documentation will not be considered as approved and will only be considered as supporting information.

<table>
<thead>
<tr>
<th>Author</th>
<th>Document ref</th>
<th>Document title</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. **Further Support**

6.1. Should you have a specific query or feedback about any of the content of this Technical Guidance Note, please send an email to technical.guidance@hants.gov.uk with the start of the email title as “TG13 – [email subject]”.

6.2. Should you have a query about applying this to your project, please contact:

- the Design Audit Engineer dealing with your S278 or S38 application (if you are a Developer or Developer’s Consultant)
- the Technical Guidance Note Specialist(s) (if you are a working within Hampshire County Council)

6.3. Associated Technical Guidance Notes:

- TG12 – Signs and Bollards
- TG14 – Road Restraint Systems & Passive Street Furniture
Appendix A – Luminaire Model Table

<table>
<thead>
<tr>
<th>Luminaire model</th>
<th>Flux</th>
<th>“lamp”</th>
<th>CCT (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philips Micro Luma – BGP 615</td>
<td>1.4 – 2.4 klm</td>
<td>12 LED</td>
<td>Neutral white (4000k) [see note 5]</td>
</tr>
<tr>
<td></td>
<td>2.6 – 5.0 klm</td>
<td>20 LED</td>
<td></td>
</tr>
<tr>
<td>Philips Mini Luma – BGP 621</td>
<td>5.2 – 7.2 klm</td>
<td>40 LED</td>
<td></td>
</tr>
<tr>
<td>Philips Luma 1 – BGP 623</td>
<td>7.4 – 7.6 klm</td>
<td>60 LED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.8 – 9.0 klm</td>
<td>68 LED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.2 – 18 klm</td>
<td>80 LED</td>
<td></td>
</tr>
<tr>
<td>Philips Luma 2 – BGP 625</td>
<td>19 klm +</td>
<td>120 LED</td>
<td></td>
</tr>
<tr>
<td>Philips Luma 3 – BGP 627</td>
<td>23 klm +</td>
<td>200 LED</td>
<td></td>
</tr>
<tr>
<td>Schreder Axia 3.1</td>
<td>1.1- 5.7 klm</td>
<td>up to 16 LEDs</td>
<td></td>
</tr>
<tr>
<td>Schreder Axia 3.2</td>
<td>2.2 – 10.5 klm</td>
<td>24-32 LED</td>
<td></td>
</tr>
<tr>
<td>Schreder Axia 3.3</td>
<td>4.5-22.1 klm</td>
<td>48-64 LED</td>
<td></td>
</tr>
<tr>
<td>Zebra asymmetric floods (Luma DPL1, DPLR1 optics) (6)</td>
<td>Output determined by light levels achieved by the road lighting</td>
<td>Cooler than adjacent road lighting</td>
<td></td>
</tr>
<tr>
<td>Subway – Simmonsigns Safeway EcoSafelight (4) varies</td>
<td>104 LED</td>
<td>Cool white (5700k)</td>
<td></td>
</tr>
<tr>
<td>Underpass - CREE Ledway Multi varies</td>
<td>20-120 LED</td>
<td>Cool white (5700k)</td>
<td></td>
</tr>
<tr>
<td>Philips Luma – to be “D” series optics configured with “Current” generation LEDs – the superseded “R” optics are not to be used.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>